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The problem of predicting a protein’s 3D structure from its primary amino acid sequence is a
longstanding challenge in structural biology. Recently, approaches like AlphaFold have achieved remarkable
performance on this task by combining deep learning techniques with coevolutionary data from multiple
sequence alignments of related protein sequences. The use of coevolutionary information is critical to these
models’ accuracy, and without it their predictive performance drops considerably. In living cells, however,
the 3D structure of a protein is fully determined by its primary sequence and the biophysical laws that cause
it to fold into a low-energy configuration. Thus, it should be possible to predict a protein’s structure from
only its primary sequence by learning an approximate biophysical energy function. We provide evidence
that AlphaFold has learned such an energy function, and uses coevolution data to solve the global search
problem of finding a low-energy conformation. We demonstrate that AlphaFold’slearned energy function can
be used to rank the quality of candidate protein structures with state-of-the-art accuracy, without using any
coevolution data. Finally, we explore several applications of this energy function, including the prediction
of protein structures without multiple sequence alignments.
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Knowledge of 3D protein structures is critical for design-
ing drugs, characterizingdiseases, and creating amechanistic
understanding of cellular biology. Experimental approaches
to protein structure determination can be costly and time
consuming, so the ability to computationally predict protein
structures from amino acid sequences is extremely useful.
Recently, AlphaFold demonstrated breakthrough performance
on protein structure prediction, with predictions often near-
ing experimental accuracy [1]. Approaches like AlphaFold

have advanced the state-of-the-art in protein structure pre-
diction by using deep learning methods to analyze coevolu-
tionary information. To predict the structure of a target amino
acid sequence, these methods first search a database of
protein sequences to compile a multiple sequence alignment
(MSA),which is essentially a collection of sequences that are
evolutionarily related to the target sequence. MSAs are
known to provide extremely useful information for predict-
ing protein structures [2–4]. Intuitively, if two residues are in
contact in a folded protein structure, mutations in the first
position may induce a selective pressure for the second
position to mutate. Such mutational covariance can be

detected in MSAs, and this signal has been critical to the
success of recent protein structure predictionmodels, includ-
ing AlphaFold. However, the requirement of MSAs for protein
structure prediction is sometimes problematic, since some
proteins have few known homologs.
In theory, it should often be possible to predict protein

structures without using MSAs, since protein structures are
fully determined by their amino acid sequences [5]. More
specifically, Anfinsen’s dogma states that protein structures
fold to minimize free energy, which is a function of the
protein’s 3D configuration and its amino acid sequence.
Therefore, if one could model this energy function with
sufficient accuracy, then one could predict protein structures
by optimizing this function over the space of 3D configu-
rations. Classical protein structure prediction methods like
ROSETTA take this approach, and sample structures from a
hand-designed energy function [6]. The challenge with this
approach is twofold. First, it is difficult to accurately model
the biophysical energy function that governs protein folding
at a level of abstraction that is computationally tractable.
Second, evenwith perfect knowledge of the energy function,
there are an astronomically large number of possible protein
geometries, so searching for the optimum is a difficult global
optimization task [7].
Given the theoretical possibility of predicting protein

structures without MSAs, it is interesting to speculate why
AlphaFold remains dependent on MSAs for its accuracy. One
intriguing possibility is that AlphaFold has learned an

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 129, 238101 (2022)
Editors' Suggestion Featured in Physics

0031-9007=22=129(23)=238101(6) 238101-1 Published by the American Physical Society

https://orcid.org/0000-0003-4818-4323
https://orcid.org/0000-0003-2774-2744
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.238101&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevLett.129.238101
https://doi.org/10.1103/PhysRevLett.129.238101
https://doi.org/10.1103/PhysRevLett.129.238101
https://doi.org/10.1103/PhysRevLett.129.238101
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


accurate energy function for scoring the accuracy of
candidate protein structures, but the coevolutionary infor-
mation in the MSA is necessary to locate an approximate
global minimum in this energy function and circumvent the
challenging optimization problem. After finding the neigh-
borhood of the global minimum using the MSA, the later
stages of the AlphaFold model may act as an “unrolled
optimizer” and locally descend the learned energy surface
to produce a refined structure prediction. AlphaFold also
outputs various confidence scores related to the predicted
accuracy of its structures, and these confidence scores may
be determined by the value of its internal energy function.
This hypothetical prediction mechanism is illustrated in
Fig. 1. Note that we use the term “energy” to describe a
function that has an optimum around the native structure
and generally correlates with the probability that a protein
sequence will adopt a given conformation, rather than a
literal thermodynamic free energy. This notion of an energy
function is reminiscent of energy-based machine learning
models, which learn an unnormalized Boltzmann distribu-
tion to represent a target data density [8].
Our hypothesized prediction mechanism lends itself to

experimental testing. Candidate structures can be supplied
to AlphaFold as templates, which are used to incorporate
known structural information from proteins that are related
to the target sequence. In this Letter we show that, when a
candidate structure is introduced as a template, AlphaFold’s
confidence metrics are closely correlated with the actual
accuracy of the candidate structure, even when no coevolu-
tionary information is supplied. This suggests that AlphaFold
has learned an accurate energy function for scoring protein
structures that does not rely on coevolutionary information.
Decoy scoring.—Computational biologists have histori-

cally predicted protein structures based on related sequences
with solved structures [11]. AlphaFold incorporates this
approach by allowing the structures of up to four related
proteins to be supplied to the model as templates. For each
template, AlphaFold receives the template’s one-hot-encoded
amino acid sequence, Cβ distance matrix, and backbone and
side chain torsion angles as inputs. In addition, AlphaFold is
given a mask indicating which atoms are unresolved in the
template structure, and ignores torsionangles involving those
atoms. Recent papers have demonstrated that AlphaFold’s
template mechanism can be used to refine experimentally
and computationally derived structural hypotheses [12,13].

We investigated whether AlphaFold has learned a coevo-
lution-independent energy function for scoring protein
structures by supplying AlphaFold with (i) a target amino
acid sequence to be predicted and (ii) a “decoy structure”
that is passed to the model as a template. The goal of this
procedure is to score the plausibility of the target amino acid
sequence adopting the geometry given by the decoy struc-
ture. It is motivated by the hypothesis that AlphaFold’s output
structure will resemble the decoy introduced as a template
and therefore, if AlphaFold has learned an accurate energy
function that does not require coevolution information, the
output confidence metrics will closely track the quality of
the decoy. Note that no coevolutionary information is
supplied to the model during this procedure.
We used a sequence of all “gap” tokens (which represent

missing amino acids) to fill in the one-hot-encoded amino
acid sequence associated with the decoy. We used the gap
sequence due to an initial observation that high sequence
identity between the decoy sequence and the target
sequence caused AlphaFold to be overconfident in the
decoy’s accuracy (Supplemental Material [14], Fig. S1).
To keep the structural information supplied to AlphaFold

from leaking the true decoy sequence, we masked out all
side chain atoms aside from Cβ, and added a Cβ atom to all
glycine residues (we decided to retain the Cβ atoms
because AlphaFold uses a Cβ distance matrix to encode
the template structure).
After processing its inputs, AlphaFold produces an output

structure and two confidencemetrics: the predicted template
modeling score (pTM) score and the predicted Local
Distance Difference Test (pLDDT) score [18,19]. To deter-
mine whether AlphaFold has learned a MSA-free energy
function for assessing protein structure accuracy, we inves-
tigated whether we could accurately rank the decoy struc-
tures based on AlphaFold’s outputs. For each decoy, we
computed a “composite confidence score” by multiplying
the output pLDDT, the output pTM, and the TMscore
between the decoy structure and the AlphaFold output struc-
ture. The last term adjusts for the fact that AlphaF’s confidence
metrics ultimately reflect the accuracy of the output structure
(which can differ from the decoy structure), while we were
interested in scoring the decoy structures for the sake of
direct comparison with other decoy-ranking methods.

ROSETTA decoys.—Using the procedure outlined above,
we aimed to determine whether ALPHAFOLD’s outputs could
be used to assess the accuracy of decoy structures intro-
duced as templates. For our initial evaluation we used the
ROSETTA decoy dataset, which contains 133 native protein
structures (targets) with thousands of decoys for each native
structure [20]. We compared AlphaFold’s ability to assess the
quality of decoy structures with the ROSETTA energy
function, as well as DEEPACCNET, which is a state-of-
the-art machine learning model for estimating the accuracy
of protein structure models [21]. All reported results are
from AlphaFold model 1 with one recycling iteration.

FIG. 1. The hypothesized role of coevolutionary information in
AlphaF’s predictions. Images inspired by [9,10].
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We found the correlation between the composite confi-
dence score anddecoyquality to be robust and consistent. The
average Spearman rank correlation between the composite
confidence score and the quality of the decoy (asmeasured by
TM Score to the native structure) was 0.925, compared to
average correlations of 0.831 and 0.760 forDEEPACCNETand
the ROSETTA energy function. Another practical indicator of
decoy-ranking performance is the quality of the top-ranked
decoy for each target. On the ROSETTA decoy dataset, the top-
rankeddecoys selected via the composite AlphaFold confidence
score had an average TM Score of 0.933 compared to 0.917
for DEEPACCNETand 0.901 for ROSETTA.More details on the
ROSETTA dataset are given in Fig. 2.
Overall, these evaluations indicate that AlphaFold can

assess the quality of candidate protein structures with
state-of-the-art accuracy, even when no coevolution infor-
mation is provided. It should be noted that AlphaFold’s
structure predictions were of low quality when no templates
were provided (average TM score of 0.408). Yet despite
being unable to predict the structures of these proteins
without a MSA, AlphaFold achieved excellent performance
assessing the quality of decoys without any MSA inputs.
This provides evidence for the hypothesis that AlphaFold has
learned an energy function that is largely independent of
coevolution information, but needs coevolution informa-
tion to search for global optima in this energy landscape.

CASP14.—To assess the decoy-ranking ability of AlphaFold
on a novel sample of proteins, we performed an additional
evaluation on the estimation of model accuracy (EMA) task
from CASP14 [22]. To set up the CASP14 EMA experiment,
the CASP organizers created a set of decoy structures by
taking the 150 most accurate server submissions for each
structure prediction target in CASP14. Note that the decoy
set does not include predictions from AlphaFold, since
AlphaFold was entered in CASP14 as a human group rather
than a server. We replicated this evaluation using AlphaFold

(with the gap sequence) to assess the decoy structures, and
compared the results with ranking methods entered in
CASP14.
The CASP assessors evaluated EMA methods based on

their top-1 GDT_TS loss, which is the difference in
GDT_TS scores between the best decoy and the top-ranked
decoy by a given EMA method [23]. EMA methods were
ranked based on their average GDT_TS loss over targets
where at least one decoy had GDT_TS over 0.4, as well as
the average Z-score of their GDT_TS loss over these
targets. For both metrics, the AlphaFold composite confi-
dence score significantly outperformed all other EMA
methods entered in CASP14. Results from the CASP14
evaluation are presented in Fig. 3.
These results indicate that AlphaFold can reliably assess the

accuracy of candidate protein structures without the use of

(a)

(d) (e)

(b) (c)

FIG. 2. Decoy ranking results on the ROSETTA decoy dataset. (a) Decoy TM score vs composite confidence for an example target.
Three selected AlphaFold output structures are visualized, color indicates model confidence. (b) Mean Spearman correlations between
various metrics and decoy TM Score. (c) Mean TM Scores of the top-ranked decoys for various metrics, as well as the mean TM Score of
AlphaFold’s prediction with no MSA. All error bars in (b) and (c) are bootstrap 95% confidence intervals of the mean. (d) Comparison of
Spearman correlations for AlphaFold and ROSETTA (left) or DEEPACCNET (right). (e) Comparison of top-1 accuracies for AlphaFold and
ROSETTA (left) or DEEPACCNET (right). For (d) and (e), each dot is a target in the ROSETTA decoy dataset; a dot’s position in each
scatterplot depicts the relevant Spearman correlation or top-1 accuracy values computed over the decoys corresponding to that target.
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coevolution information. However, coevolution data (or a
method that can generate decoys close to the correct
structure) are still necessary for accurate structure prediction,
sinceAlphaFold generally fails to predict accurate structures for
the CASP14 targets without a MSA (Fig. S3).
Applications.—Our finding that AlphaFold can assess the

accuracy of candidate protein structures without the need
for coevolution data opens up several exciting applications.
One such application is the prediction of protein structures
without MSAs. In theory, it should be possible to accurately
predict protein structures by searching over the space of
possible decoy structures and finding those that are highest
ranked by AlphaFold. However, given the vast number of
possible candidate structures, an exhaustive search is
intractable.
One way of mitigating this intractability is to search over

the output space of a generative model of realistic protein
structures. Instead of training a new generative model of
candidate structures, we designed a generator-discriminator
pipeline that links two instances of AlphaFold [Fig. 4(b)]. The
first instance of AlphaFold (the generator) takes an arbitrary
amino acid sequence as input, and produces a candidate
protein structure as output. This candidate structure is then
supplied to the discriminator as a template (with a sequence
of gap tokens). Finally, the discriminator tries to predict the

structure of the target sequence using the template, and
produces confidence outputs in the process. As demon-
strated by our previous experiments, these confidence
metrics are strongly correlated with the accuracy of the
candidate structure. By perturbing the input sequence to the
generator, we can explore the space of candidate structures
while using the discriminator’s confidence metrics as an
indicator of accuracy. We performed this exploration by
backpropagating the discriminator’s confidence signal to
the input sequence and updating it via gradient ascent,
thereby molding the input sequence to produce a high-
quality candidate structure from the generator.

(a)

(b)

FIG. 3. Decoy ranking results on CASP. (a) GDT_TS loss for
AlphaFold and top EMA methods from CASP14. (b) GDT_TS Z-
scores for AlphaFold and top EMA methods from CASP14. Error
bars are bootstrap 95% confidence intervals of the mean.
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FIG. 4. Application of AlphaFold’s template mechanism for
sequence and structure generation. We compare single-sequence
structure prediction with (a) the baseline structure prediction
protocol (AlphaFold with a single-sequence input and three re-
cycles) or (b) two instances of AlphaFold for structure generation
and discrimination. (c) Protocol for sequence design to minimize
loss between desired and predicted structure via distogram, with
and without template (red line). (d) Comparing structure accuracy
of (a) vs (b) on the ROSETTA decoy set. Dots colored by PLDDT
red to blue (50 to 90). (e) Comparing sequence recovery with and
without templates on the ROSETTA monomeric and CASP14 FM
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Using this approach we were able to improve upon
AlphaFold’s structure predictions when no MSAs were avail-
able. Although we did not use recycling in the generator and
discriminator models, we compared the quality of our
optimized predictions to a baseline created by running
AlphaFold with a single sequence input and three recycling
iterations. On the ROSETTA decoy set, we could significantly
improve prediction quality (ΔTM score > 0.1) on 50
examples out of 123 compared to running the three-recycle
baseline [Fig. 4(d)]. We hypothesize that this procedure is
able to improve AlphaFold’s predictions because it performs a
more wide-ranging search than the “unrolled optimizer”
implemented by AlphaFold itself. Though our results demon-
strate the potential of searching over candidate structures
using AlphaFold’s learned energy function, the current opti-
mization protocol sometimes gets stuck in localminimawith
low accuracies and low confidence scores (Figs. S11–13).
Since AlphaFold’s learned energy function can determine

the level of compatibility between a protein sequence and
structure without the need for coevolution data, it is
potentially applicable to protein design (i.e., the problem
of finding a protein sequence that folds into a target
backbone geometry). Our Letter suggests a straightforward
approach to protein design using AlphaFold: supply the
desired backbone structure to AlphaFold as a template (with
a sequence of gap tokens and side chains masked), and
optimize the composite confidence score with respect to the
input sequence. To facilitate gradient-based optimization,
we used the categorical cross entropy between AlphaFold’s
predicted distance matrix and the template distance matrix
as a surrogate loss for the composite confidence score.
Using this loss circumvents the need to differentiate the TM
score, which involves an iterative alignment procedure with
potentially unstable gradients. The cross entropy loss can
replace the entire composite score (including the pTM and
pLDDT components), because when AlphaFold’s confidence
in its output structure is low its predicted distance distri-
butions becomewider, thereby increasing the cross entropy.
Pairing our target backbones with sequences designed by
cross entropy optimization resulted in higher composite
confidence scores than pairing them with their native
sequences, indicating that optimizing the cross entropy
loss effectively optimizes the composite confidence as
well (Fig. S9).
Fixed-backbone protein design methods are often bench-

marked based on the average fraction of residues that match
between the designed sequence and the true native
sequence for the target backbone [24]. Our design pro-
cedure achieved an average sequence recovery of 29.1% on
the ROSETTA decoy dataset, which is comparable to energy-
based design methods like ROSETTA [25].
Repeating the same procedure without a template

input resulted in significantly lower sequence recovery
[Fig. 4(e)]. This is likely because, without a template or
MSA, AlphaFold often fails to predict the correct structure for

the input sequence. This leads to “false negatives” while
optimizing the input sequence to match the target backbone
(i.e., input sequences that would actually fold into the target
backbone are mispredicted by AlphaFold and incorrectly
assigned high loss). The template input eliminates false
negatives by providing a good starting point for AlphaFold’s
structural optimization, allowing AlphaFold to confidently
and accurately predict when an input sequence will fold
into the target structure. The effectiveness of template
inputs at increasing sequence recovery supports our
hypothesis that AlphaFold has learned an energy function
that can assess sequence-structure agreement, but needs
coevolution data or templates to help search for optimal
structures.
Conclusions.—In this Letter we have provided evidence

that AlphaFold has learned a protein structure energy function
that does not need coevolution information to achieve high
accuracy, although AlphaFold still needs coevolution data to
search for global minima in this function. This finding has
significance for the interpretation of protein structure
prediction models, as well as practical applications.
These applications include the prediction of protein struc-
tures when MSAs are not available and the improvement of
protein design methods.
The code used to run the evaluations in the Letter, as well

as the raw data, is available at [26].
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